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Institute of Visual Computing and Human-Centered Yann Ricquebourg

Technology, TU Wien, Vienna, Austria Univ Rennes, CNRS, IRISA, F-35000 Rennes, France

{first name}.{last name}@tuwien.ac.at {first name}.{last name}@irisa.fr

Richard Zanibbi

Rochester Institute of Technology, Rochester, USA

rlaz@cs.rit.edu

Abstract—Optical Music Recognition (OMR) is the chal-
lenge of understanding the content of musical scores. Accu-
rate detection of individual music objects is a critical step in
processing musical documents because a failure at this stage
corrupts any further processing. So far, all proposed methods
were either limited to typeset music scores or were built to
detect only a subset of the available classes of music symbols.
In this work, we propose an end-to-end trainable object
detector for music symbols that is capable of detecting almost
the full vocabulary of modern music notation in handwritten
music scores. By training deep convolutional neural networks
on the recently released MUSCIMA++ dataset which has
symbol-level annotations, we show that a machine learning
approach can be used to accurately detect music objects with
a mean average precision of over 80%.
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I. INTRODUCTION

Optical Music Recognition (OMR) attempts to under-

stand the musical content of documents containing printed

or handwritten music scores by recognizing the visual

structure and the objects within a music sheet. Once, all

objects are recognized, a semantic reconstruction step at-

tempts to understand the relations of objects to each other

and recover the musical semantics. With recent advances

in computer vision, accelerated by the popularity of deep

convolutional neural networks (CNN), OMR received a

number of groundbreaking contributions that generate very

accurate results for particular sub-problems, such as staff

line removal [1] or symbol classification [2]. In this work,

we investigate the challenge of music object detection

which aims at accurately detecting music objects in music

scores. Music objects can be both primitive glyphs (e.g.

note-head, stem, beam) or compound symbols (e.g. notes,

key-signatures, time-signatures) used in music notation.

A music object detector takes an image and outputs the

bounding-box and class-label for each found object. Tradi-

tionally, this was solved by first removing the staff lines,

followed by symbol segmentation and classification [3]

(see Figure 1).

In this work, we present the first attempt to establish a

baseline for music object detection of handwritten scores

with the full vocabulary of modern music notation. By

following a machine learning approach and using an end-

to-end trainable object detector on the recently published
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Figure 1. The traditional pipeline for Optical Music Recognition.
Music object detection subsumes segmentation and classification of
music symbols.

MUSCIMA++ dataset, we demonstrate how to build a

generalizable and accurate music object detector and in-

vestigate the effects of various technical choices like the

use of a particular detector or feature extractor.

II. RELATED WORK

Visual object detection is a very active field of research

with remarkable results on detecting objects in natural

images with a variety of active competitions. Many com-

peting approaches have been proposed in the last few

years such as Faster R-CNN [4], R-FCN [5] and Single

shot detectors [6], [7]. While some optimize for accuracy,

others strive for high-performance [8]. However, all of

them share the fact, that they heavily make use of deep

convolutional neural networks.

The traditional pipeline of segmenting and classifying

symbols has been shown to work well on simple typeset

music scores with a known music font [9]. But when

considering low-quality images, complex scores or even

handwritten ones [10], these systems tend to fail, mainly

because errors propagate from one step to subsequent

steps [11], e.g. a segmentation error could cause incor-

rectly detected objects. Initial attempts to overcome this

limitation by directly detecting music objects with CNNs

were made by Hajič and colleagues, who suggest an

adaptation of Faster R-CNN with a custom region pro-

posal mechanism based on the morphological skeleton to
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accurately detect noteheads [12] and Choi and colleagues,

who are able to detect accidentals in dense piano scores

with high accuracy, given previously detected noteheads,

that are being used as input-feature to the network [13].

However, both of them are limited to experimentations

on a tiny subset of the full vocabulary used in modern

music notation. Although both approaches can be extended

to other classes, it remains an open question, whether a

general purpose detector that can learn a large vocabulary

is superior to multiple class-specific detectors.

A very interesting alternative to the traditional OMR

pipeline is the attempt of solving OMR in a holistic

fashion. The first notable attempt at doing so was by

Pugin [14], who used Hidden Markov Models to read

typographic prints of early music. More recently, the

combination of using CNNs jointly with Recurrent Neural

Networks to build an end-to-end trainable OMR system

[15] was adapted and extended in [16] and [17]. Both train

very similar models on a very large set of monophonic

music scores containing a single staff per image. Although

the reported results on the given datasets are very good,

the two systems mentioned lastly, currently exhibit the

following limitations:

• They operate only on very primitive, printed, mono-

phonic scores. Extending their pipeline to more com-

plex music scores with multiple voices requires a

different formulation of the output data to at least

include onset and offset of each note and not only

the pitch and duration.

• By using pooling operations during the feature ex-

traction, the network gains location invariance that

conflicts with the interest of precise location infor-

mation, which is needed to correctly infer the pitch

of a note.

• By omitting the positional information of individual

symbols and only considering the audible information

of music symbols as output, such systems restrict

themselves to replayability, as reprinting of music

scores requires precise positional information [18].

While in theory semantic segmentation of the scores

would go one step further and extract considerable more

information – basically a classification of each pixel – two

things should be noted: classifying pixels assumes that the

class of each pixel is unique and mutually exclusive [19],

an assumption that might not hold for overlapping symbols

but can probably be ignored for practical applications;

and most traditional systems that attempt to perform

semantic reconstruction operate on detected objects, not on

individual pixels, thus requiring a clustering step after the

semantic segmentation. Therefore we argue, that detecting

bounding boxes of musical objects directly is preferable

for OMR.

III. THE CHALLENGE OF DETECTING MUSIC

SYMBOLS

When comparing music object detection to detection of

objects in natural scenes or optical character recognition,

two unique challenges are worth noting: firstly, music

Figure 2. Beginning of Franz Schubert’s Ave Maria D. 839, with
simplifications in the second bar that intentionally violate the syntactic
rules of common music notation.

scores often have a very high density of objects with more

than 1000 objects printed on a single page. Secondly, the

relative position between a symbol and its staff lines is

crucial. Already a tiny error along the y-axis may have

a significant impact on recovering the correct pitch of a

note.

The detection of music objects is of paramount im-

portance to the overall OMR process because once all

symbols were detected accurately, a set of rules can be

applied to infer the semantics of the objects and perform

music notation reconstruction as demonstrated by [20].

We also suggest that the point right after individual

objects were detected and classified, is probably the best

moment for putting the user into the loop, if that is

intended. Fixing errors at this stage can be performed

locally without dealing with complicated semantic rules

or affecting neighboring symbols (changing the duration

of a single note in a music notation program often entails

side effects on other notes within the same of subsequent

bars). Highlighting uncertain detections and suggesting

likely alternatives could improve the usability and reduce

editing costs even further.

Note that even with all symbols being correctly de-

tected and classified, recovering the musical semantics still

remains a very challenging problem, as demonstrated in

Figure 2. Here, the second staff in the first bar contains

a small 6 for each tuplet, indicating that the first rest and

the following five chords sum up to a quarter note. This

small number is intentionally omitted in the second bar for

simplification but would now result in an invalid meter if

interpreted in isolation. Only with the preceding informa-

tion and prior knowledge about common simplifications,

a musician can interpret such scores correctly.

To be able to introduce such semantics into an OMR

system, it is necessary to formalize and use musical

notation knowledge. Rule-based systems can perform such

formalization. For example, with the DMOS system [20]

it has been possible to formalize the musical notation,

graphically and syntactically, for full polyphonic scores,

and produce a system which allows to assign notes to

multiple voices and use the vertical alignments of syn-

chronized notes in orchestral scores as well as the number

of beats in a bar to detect and correct recognition errors.

This grammatical formalization is built on terminals which

correspond to the musical objects we propose to recognize

with deep convolutional neural networks.
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IV. BUILDING A MUSIC OBJECT DETECTOR

For building a robust and extensible music object de-

tector, we propose a machine-learning approach with deep

convolutional neural networks, which operate directly on

the input image. This simplifies the OMR process to the

following steps: preprocessing, music object detection, and

semantic reconstruction. Steps such as removing the staff

lines and segmenting symbols do not need to be addressed

explicitly. Existing state-of-the-art object detectors such as

Faster R-CNN or R-FCN were designed to detect objects

in natural scenes and have been shown to work well on

challenging datasets such as COCO [21] or ImageNet [22].

But applying them out-of-the-box on sheets of music can

lead to a suboptimal performance, due to the dense nature

of music scores with many tiny objects. Therefore, we

suggest applying a certain amount of preprocessing to the

data and tailor these detectors to perform well on the task

at hand.

A. Dataset and Preprocessing Steps

For training a music object detector, we use the MUS-

CIMA++ dataset [23], as it contains 140 high-quality

images with over 90000 symbol-level annotations, made

by human annotators across 105 different classes of music

symbols for the underlying CVC-MUSCIMA dataset [24].

The images have a high resolution of about 3500x2000

pixel, are binarized and optionally come with staff lines

removed. For consistency, all white-on-black images are

first inverted and then converted to RGB, as the evalu-

ated implementations take colored images as input1. To

efficiently train an object detector on such images, the

image size has to be reduced. We propose to crop the

images in a context-sensitive way, by cutting images first

vertically and then horizontally, such that each image

contains exactly one staff and has a width-to-height-ratio

of no more than 2:1, with about 15% horizontal overlap to

adjacent slices (see Figure 3). Basically, each horizontal

slice extends from the bottom of the staff above to the

top of the staff below. This cropping can also be done

by automatically detecting staffs and then applying the

same slicing rules leading to image crops that partially

overlap both horizontally and vertically. For splitting the

cropped images into a train and test set, we follow the

recommendations from [23] to ensure that the test set

contains scores of all complexities and that there is no

overlap of writers between the training and the test set.

We furthermore used 10% of the remaining training set for

validation during the training. In total, we obtained 6181

samples, that were divided into a training, validation and

test set, containing 4794, 533 and 854 images respectively.

One limitation of this approach is, that all objects

significantly exceeding the size of such a cropped region,

will not appear in the data, as only annotations that have an

intersection-over-area of 0.8 or higher between the object

and the cropped region are considered part of the ground

truth.

1The overhead created by this conversion is only minimal, as the
duplicated information gets merged again in the first layer of the CNN.

Figure 3. Illustration of the sliding window approach, used to crop music
scores into meaningful subimages (red) with horizontally overlapping
areas (orange) between adjacent crops.

As music objects, we consider the full vocabulary of

all 105 classes contained in the MUSCIMA++ dataset,

containing both primitives such as noteheads as well as

compound objects such as key-signatures that consist of

one or multiple accidentals.

B. Experimental Design

For evaluating our suggested approach, we conducted

several experiments to study the performance of vari-

ous object detectors and feature extractors, as well as

the effects of staff line removal, transfer-learning and

removing classes with rare symbols. Using the deep

learning library TensorFlow2, we adapted the work from

[8] to detect music objects by training on the data de-

scribed in Section IV-A. The entire source code, including

training protocols and detailed instructions to reproduce

our results, can be found at http://github.com/apacha/

MusicObjectDetector-TF. We considered:

• the three meta-architectures Faster R-CNN, R-FCN,

and SSD as object detectors. Faster R-CNN and R-

FCN are both two-stage detectors with a region pro-

posal network and a region classifier. The difference

is that Faster R-CNN uses a sliding window for

classification, whereas R-FCN uses position sensitive

score maps and per-RoI pooling, which is more

efficient at the cost of a slightly reduced precision.

SSD is a generalized region proposal network for one

stage detection on multiple feature maps

• ResNet50, Inception-ResNet-v2, MobileNet-v1 and

Inception-v2 as feature extractors, explicitly exclud-

ing custom-made networks that cannot benefit from

transfer-learning

• images with and without staff lines (based on the

images provided along the CVC-MUSCIMA dataset)

• the full vocabulary of all 105 classes included in the

MUSCIMA++ dataset, as well as a reduced set of

only 71 classes, removing 34 classes that appear less

than 50 times in the ground truth and are only of

minor importance such as uncommon numerals and

letters. Exceptions were only made for the classes

double sharp and the numerals 5, 6, 7 and 8: although

they appear less than 50 times in the dataset, we

consider them essential to recover music semantics

such as pitch and time signature.

2https://www.tensorflow.org, last seen 9th February 2018
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Figure 4. Typical sample of a cropped image that serves as input for
the music object detector.

All of the above-mentioned object detectors have a

certain set of hyperparameters that need to be fine-tuned

for the particular dataset. For example, [7] shows that

using statistical analysis to obtain a sensitive number of

anchor boxes, anchor box sizes, and anchor box ratios can

improve the results significantly compared to handpicked

priors. When running similar analysis on the cropped

images, we obtain the following characteristics: For a

typical input image of 600 pixels width and 300 pixels

height (see Figure 4), we found the average square box

size is about 37 pixels with a standard deviation of 48

pixels. Note, that the dataset also contains extreme cases

of small objects like dots with only a few pixels and

large objects that spans hundreds of pixels. The mean

ratio from width to height of boxes is 0.7 which means

that the majority of boxes are higher than they are wide.

Furthermore, cropped images that are to be fed to the

detector contain 19 symbols on average, with a standard

deviation of 11. Concluding the analysis, we decided to

use a grid of 32x32 pixels with a stride of 8 pixels and

aspect ratios of 0.06, 0.29, 0.48, and 2.2 with the scales

0.25, 0.5, 0.75, 1.0, 1.75, and 4.0 to reflect the wide range

of object shapes in the dataset.

C. Evaluation and Results

Following the evaluation protocols of the Pascal VOC

challenge [25], we report the mean average precision

(mAP) for each completed training in Table I and the

detailed average precision per class for the combination

that yielded the best results in Table II. Figure 5 shows a

typical detection within a single image.

We find that the best performing detector with regards to

precision is the Faster R-CNN using the Inception-Resnet

V2 feature extractor, pre-trained on the COCO dataset.

This model produces a mAP of over 80%. The training

on a GeForce GTX 1080 Ti takes approximately one day

per configuration before results become stable. Validating

˜500 images takes about 2-4 minutes, so inference should

take less than half a second per (cropped) image. When

comparing the results of training on images with and

without staff lines, the impact is no longer significant,

supporting the claim of [14], that staff line removal might

no longer be necessary. However, readers should also note

that the staff lines in the CVC-MUSCIMA dataset are

synthetic and do not experience the usual distortions that

apply to scans or pictures of real music scores.

Figure 5. Typical detection results with most symbols recognized
correctly.

Other detectors like the R-FCN or SSD produce good

results as well, with a mAP of 75% and 71% respectively.

Our results, therefore, comply with the findings of [8],

where in particular the SSD model trades smaller accuracy

for higher processing speed. Using pre-trained weights, in-

stead of random initialization and the RMSprop optimizer

as opposed to Stochastic Gradient Descent, improved the

results significantly, speeded up convergence and was

therefore used throughout the experiments. Modifying the

set of classes by removing underrepresented classes as

described in Section IV-B, boosted the mAP by up to 6%

in some cases. Note, that Table II is missing six classes,

that did not have any instances in the test set because

they exceeded the size of the image crops and were thus

discarded during the preprocessing.

V. DISCUSSION AND CONCLUSION

In this work, we show that state-of-the-art deep learning

detectors like Faster R-CNN, R-FCN and SSD can pro-

duce accurate detection results on a wide range of music

symbols. After optimizing different hyperparameters, we

achieve a mAP of over 80%, which is a solid baseline.

However, there are still a couple of open issues, that

need to be addressed in future work, like how to process

a whole page of a score. In this work, we used a sim-

ple overlapping sliding window approach. This method,

although simple to use, has many well-known downsides

like the poor performance of processing empty images or

cutting up large symbols as well as a non-trivial merging

step that has to fuse information from multiple overlapping

sections.

Another problem, specific to OMR, is the inherent

imbalance of symbol classes: some symbols like noteheads

are extremely frequent whereas others like double sharps

are rare and often tied to a specific type of score. Having

experimented with state-of-the-art deep learning object

detectors, we found that classes do not interact with

each other: simplifying the task by removing line-shaped

classes did not improve the overall precision. There also

seems to be a minimum threshold of about 20 samples

per class, in order to be meaningful during the training.

Currently, there is no guarantee, that the model does

not overfit, but with recently published work like the

RetinaNet and its focus loss [26] the effects of this class-

imbalance could be mitigated to improve the training,

especially on hard to detect classes.
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Table I
DETAILED RESULTS FOR VARIOUS HYPERPARAMETER COMBINATIONS OF THE MUSIC OBJECT DETECTOR.

Meta-Architecture Feature Extractor
Number

of classes
Images have

staff lines

Mean Average
Precision on
Test Set (%)

Weighted Mean
Average Precision
on Test Set (%)

Faster R-CNN Inception-ResNet-v2 105 � 81.56 94.22
Faster R-CNN Inception-ResNet-v2 105 � 81.23 94.56

Faster R-CNN Inception-ResNet-v2 71 � 85.12† 94.68

Faster R-CNN Inception-ResNet-v2 71 � 87.80‡ 95.05
Faster R-CNN ResNet50 105 � 76.39 93.07
Faster R-CNN ResNet50 105 � 78.45 93.10
Faster R-CNN ResNet50 71 � 82.30 93.47
Faster R-CNN ResNet50 71 � 84.85 93.63

R-FCN Inception-ResNet-v2 105 � 69.75 89.12
R-FCN Inception-ResNet-v2 105 � 70.88 89.42
R-FCN ResNet50 105 � 75.53 92.59
R-FCN ResNet50 105 � 74.29 92.33

SSD Inception-v2 105 � 71.52 82.44
SSD Inception-v2 105 � 70.40 81.75
SSD MobileNet-v1 105 � 62.30 74.97
SSD MobileNet-v1 105 � 61.56 76.74

Although we used the test set, proposed by the MUS-

CIMA++ authors, where writers in the test set do not

appear in the training set, we are still not certain whether

this system is truly writer independent or not. One way to

confirm this would be to perform a cross-validation, where

each writer in the dataset is evaluated independently.
Finally, we have shown that removing staff lines can

be omitted for music object detection, when using CNNs.

Future experiments that apply data-augmentation using

noise models and deformed images, as proposed for the

staff removal challenge [27], can give even more insights

into the robustness of our approach.
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[10] Arnau Baró, Pau Riba, and Alicia Fornés, “Towards the
recognition of compound music notes in handwritten music
scores,” in 2016 15th International Conference on Frontiers
in Handwriting Recognition (ICFHR). Institute of Elec-
trical and Electronics Engineers Inc., 2016, pp. 465–470.

[11] A. Pacha and H. Eidenberger, “Towards self-learning op-
tical music recognition,” in Proceedings of the 16th IEEE
International Conference On Machine Learning and Appli-
cations, 2017, in print.
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